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Introduction

 Since 2005/2006, processor manufacturers have 
shifted their method of scaling performance from 
increasing clock speeds to increasing the number of 
cores. Processors in the future are predicted to have 
hundreds of cores.

 The rise of multi- and many-core processing has 
introduced new urgency to learning parallel program-
ming. Whereas typical machines today have two 
cores, today’s graphics cards can already run hun-
dreds of threads in parallel. General-purpose comput-
ing on graphics processing units (GPGPU) broke into 
the mainstream with the introduction of Nvidia’s CUDA 
API in 2007.

 We focus on lab exercises at the undergraduate 
level. Three undergraduate students and one faculty 
member spent several weeks on CUDA lab exercises, 
starting with the book by Kirk and Hwu [1] which was 
published in February 2010. We describe our expe-
riences and lessons learned working with the book 
and its accompanying labs. After this, we share our 
experiences and suggestions and discuss possible 
extended labs.

Background
 
 The CUDA programming model is an extension 
of the C language. Programmers write an applica-
tion with two portions of code — functions to be exe-
cuted on the CPU host and functions to be executed 
on the GPU device. The entry functions of the device 
code are tagged with a __global__ keyword, and are 
referred to as kernels. A kernel executes in parallel 
across a set of parallel threads in a Single Instruction 
Multiple Thread (SIMT) model. Since the host and 
device codes execute in two different memory spaces, 
the host code must include special calls for host-to-
device and device-to-host data transfers.

 When the device executes a kernel it runs within 
a grid with parameters defined in terms of number of 
blocks (up to two dimensions) and number of threads 
per block (up to three dimensions), but totalling no 
more than 512 threads per block. Streaming multipro-
cessors on the video card execute the thread blocks. 
The graphics card we used was the Nvidia 9800GT, 
which has 14 streaming multiprocessors, each of 
which can execute 8 blocks or 768 threads at one 
time for a maximum of 10,762 concurrent threads.

Lab Exercises

Lab 1: Matrix Multiplication
 The first lab involves implementing basic matrix 
multiplication on the GPU. The supplied matrices are 
only 16*16, so they can fit in a single block of threads. 
It provides functions that handle the creation of matri-
ces and host-to-device as well as device-to-host 
memory management. It does not provide the kernel 
code or the code to invoke the kernel. Completing the 
kernel code was a relatively easy process, given a 
proper understanding of the Matrix structure and how 
to access elements within the matrix in terms of a one-
dimensional array.
 We feel that, even though it is meant as an intro-
duction, the supplied code does too much work for 
the student. Memory management is important and, 
in a simple lab like this, not hard to understand. We 
believe that students might benefit from familiarizing 
themselves with this process from the beginning. This 
lab took approximately two hours of reading, half an 
hour to write the code and about two hours to debug 
the program in order to get it working.

Lab 2: Reduction
 The second lab from the book is the implementa-
tion of a parallel reduction algorithm. The kernel is 
given an array of 512 values and returns their sum. 
The concept introduced here is thread diversion. A 
naive implementation would cause threads in every 
warp to diverge, decreasing performance substan-
tially. The following testimonial is also from Student 2.
 We feel that it is easy to understand how diver-
gent threads could be minimized and the lab itself is 
easy to code. Because it is limited to 512 elements, 
only one block is needed. The concepts behind the 
lab were easy to understand. It took about an hour to 
code, although we had more experience with CUDA 
than a student assigned this lab would.

Experiences and Suggestions

 Due to their similar nature and their effectiveness 
as introductory examples into CUDA, labs 1 and 3 
are best paired together. The continuity of moving 
between the two may help solidify the student’s under-
standing of the basic operations of memory allocation 
and kernel execution. 
 However, students may be more engaged with a 
more results-driven problem. The current reward for 
completing a lab is the command line stating “Test 
PASSED” rather than “Test FAILED.” We feel that the 
benefit of CUDA is lost in the lack of feedback. One 
method we found interesting was the inclusion of tim-
ers to compare the CPU and GPU versions of the 
solution (see chart). In lab 3, we were able to mea-
sure a speedup of a factor of 16 for large matrices 
over the included CPU based matrix multiplier. We 
believe that displaying the speed increase is effective 
for motivating students. 
 Visual feedback for correct solutions is another 
means to motivate students. Getting a “Test PASSED” 
message upon completion is not as satisfying as see-
ing something that the student creates. That is why we 
propose supplementing lab 4 (convolution) with a lab 
on the game of life (see [5]). Instead of looking at a 5 
by 5 block of elements around the one being worked 
on, the game of life looks at a 3 by 3. It has similar 
challenges and would still need haloing to work effi-
ciently, but provides visual feedback.
 One additional idea for a lab could be the inclu-
sion of a simple ray tracer for those students familiar 
with graphical concepts. The nature of ray traced 3D 
graphics allows for pixels to be calculated indepen-
dently of each other. This project may make for a good 
final or semester lab as it provides more opportunities 
for parallel optimization as well as providing a graphi-
cal result as a reward for a successful implementation.
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Lab 3: Mapping and shared memory
 Lab 3 involves matrix multiplication like the first lab 
but extends it by removing the size limit for input matri-
ces. This necessitates using more than one thread 
block because a single block can hold up to 512 
threads, or enough for a 32*16 matrix. The input matri-
ces must be broken up into manageable blocks for the 
GPU to execute. This is the first lab which uses both 
the thread index and block index It also introduces 
shared memory, memory that all threads in a block 
can read, which can increase the efficiency of the pro-
gram.
 This lab is a more effective tool for understanding 
the structure of CUDA. Forcing the student to use mul-
tiple blocks makes the kernel invocation syntax more 
clear. We felt that shared vs. global memory should be 
explained to students and could even be taught sepa-
rately by having students create tiled matrix multiplica-
tion programs both with and without shared memory.
   
Lab 4: Convolution
 Convolution is important in image and signal pro-
cessing applications. The largest hurdle when pro-
gramming a convolution kernel is dealing with the 
edge cases. In our 5x5 convolution lab, each element 
uses the 24 elements around it, but if it is on or near 
an edge, it must substitute zeroes for the missing ele-
ments. The solution is to load the elements operated 
on by the block into shared memory but with a halo of 
required elements around it.
 This lab is more challenging than those preceding 
it. The solution code dedicated threads to loading the 
halo elements, leaving them idle for the computation 
itself. Our more efficient solution was much more dif-
ficult to code and debug. This lab took about an hour 
to code and 3 hours to debug, along with an hour of 
reading. The debugging time would have been cut 
down if the errors in the program had not crashed the 
computer when the it ran.
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CPU vs GPU Performance
This chart details the speed increase of the lab 3 GPU 
matrix multiplier over its reference CPU implementation 
for matrices of different sizes. The different lines rep-
resent the different block sizes into which the matrices 
were divided.

We wanted to see how much faster the CUDA version 
of matrix multiplication from lab 3 was than the CPU ver-
sion, so we wrapped a timer around each function. We 
think that students might find a performance comparison 
like this more interesting than a “Test PASSED” mes-
sage.
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